Kinetics of D-lactic acid production by Sporolactobacillus sp. strain CASD using repeated batch fermentation.

نویسندگان

  • Bo Zhao
  • Limin Wang
  • Fengsong Li
  • Dongliang Hua
  • Cuiqing Ma
  • Yanhe Ma
  • Ping Xu
چکیده

D-lactic acid was produced by Sporolactobacillus sp. strain CASD in repeated batch fermentation with one- and two-reactor systems. The strain showed relatively high energy consumption in its growth-related metabolism in comparison with other lactic acid producers. When the fermentation was repeated with 10% (v/v) of previous culture to start a new batch, D-lactic acid production shifted from being cell-maintenance-dependent to cell-growth-dependent. In comparison with the one-reactor system, D-lactic acid production increased approximately 9% in the fourth batch of the two-reactor system. Strain CASD is an efficient D-lactic acid producer with increased growth rate at the early stage of repeated cycles, which explains the strain's physiological adaptation to repeated batch culture and improved performance in the two-reactor fermentation system. From a kinetic point of view, two-reactor fermentation system was shown to be an alternative for conventional one-reactor repeated batch operation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Betaine Improves Polymer-Grade D-Lactic Acid Production by Sporolactobacillus inulinus Using Ammonia as Green Neutralizer.

The traditional CaCO3-based fermentation process generates huge amount of insoluble CaSO4 waste. To solve this problem, we have developed an efficient and green D-lactic acid fermentation process by using ammonia as neutralizer. The 106.7 g/L of D-lactic acid production and 0.89 g per g of consumed sugar were obtained by Sporolactobacillus inulinus CASD with a high optical purity of 99.7% by ad...

متن کامل

Environmentally Friendly Production of D(−) Lactic Acid by Sporolactobacillus nakayamae: Investigation of Fermentation Parameters and Fed-Batch Strategies

The interest in the production of lactic acid has increased due to its wide range of applications. In the present study, the variables that affect fermentative D(-) lactic acid production were investigated: neutralizing agents, pH, temperature, inoculum percentage, agitation, and concentration of the medium components. An experimental design was applied to determine the optimal concentrations o...

متن کامل

Repeated open fermentative production of optically pure L-lactic acid using a thermophilic Bacillus sp. strain.

A thermophilic Bacillus sp. strain 2-6 was used in completely open repeated batch fermentation for producing optically pure L-lactic acid. Up to 107 g l(-1) L-lactic acid of optical purity 99.8% was obtained with NaOH as pH regulator. Unexpectedly, accumulated cells did not necessarily lead to increased L-lactic acid production. Kinetic and viable cells analyses revealed that L-lactic acid prod...

متن کامل

Cell Entrapment of Lactobacillus casei subsp. casei ATCC 39392 for Lactic Acid Production

In this study, lactic acid production by repeated batch fermentation using cell entrapped methods was compared. Barium alginate beads, agar gel and polyurethane foam cubes were employed as carriers to immobilize Lactobacillus casei subsp. casei for the purpose of L (+)-lactic acid production. Increasing concentrations of lactic acid during fermentation were better tolerated by barium alginate e...

متن کامل

Batch Kinetics and Modeling of Alkaline Protease Production by Isolated Bacillus sp. (RESEARCH NOTE)

The aim of this study was the use of fish waste hydrolysate (FWH) as a substrate for alkaline protease production using isolated Bacillus sp. in a batch system. Then the fermentation kinetics of enzyme production was studied. The results show that with the addition of FWH to the fermentation medium with a final concentration of 4% (optimal concentration), alkaline protease value reached a maxim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioresource technology

دوره 101 16  شماره 

صفحات  -

تاریخ انتشار 2010